云南大学地球科学学院欢迎您 ! 中文 English
您现在的位置: 首页 >> chinese >> 院系 >> 地质学系 >> 师资队伍 >> 赵志芳
来源:地球科学学院 | 作者:赵志芳 | 发布日期:2016-04-30 11:47:00 
QQ图片20190613235647   赵志芳博士、教授、博士生导师

云南省技术创新人才,云南大学地球科学学院副院长

E-mail:zzf_1002@163.com

 
个人简介

       云南香格里拉人,1971.8出生,教授,博导。云南省技术创新人才,云南大学地球科学学院副院长,“云南省中老孟缅自然资源遥感监测国际联合实验室”主任,“教育部云南大地学实习虚拟仿真教学创新实验室”主任,“云南省三江成矿作用及资源勘查利用重点实验室”副主任,“云南省高校国产高分卫星遥感地质工程研究中心”主任。国际数学地质协会(IAMG)会员,中国地质学会遥感地质分会理事,中国地质学会数据驱动与地学发展专业委员会委员,中国地质学会数学地质与地学信息专业委员会委员。联合国“深时数字地球与矿产资源”教席DDEMR客座教授。

 

E-mailzzf_1002@163.com

 
研究领域:

资源与环境遥感监测、矿化蚀变遥感异常增强提取、边境地区国土资源遥感监测
 
讲授课程:

《腾冲火山地学探索虚拟仿真实验》(国家一流课程)

《资源环境遥感》、《地质环境与矿产资源》(研究生课程)

《遥感地质学》、《遥感地质学实验》(本科生课程)

 

博士研究生招生:

地图学与地理信息系统(遥感地质方向)

 

硕士研究生招生:

资源与环境(环境地质与灾害地质方向)

地图学与地理信息系统(遥感地质方向)

环境地质学

第四纪地质学

矿物学岩石学矿床学(遥感地质方向)

 
教育经历:

2005.09-2009.1,中国地质大学(北京),资源与环境遥感,工学博士

2001.09-2005.01,中国地质大学(北京),地质工程,专业硕士

1988.09 -1992.06,南京大学大地海洋科学系,地貌学与第四纪地质学,理学学士

 
工作经历:

2020.01-2020.05,美国北德克萨斯大学环境与地学系(Department of Geography and the Environment, University of North Texas, USA),访问学者

2009.10-至今,云南大学资源环境与地球科学学院地质学系,教学与科研

1992.07-2009.09,云南省地质科学研究所、云南省地质矿产勘查开发局信息中心、云南省地质调查院信息中心,遥感地质应用研究

2006.12-2007.12,加拿大约克大学(York University)地球与空间工程系(Department of Earth and Space and Engineering),博士联合培养

2000.03-2000.05,德国联邦地质与自然资源研究院(BGR),遥感地质培训

 

获奖:

1. 2025年,复杂地质背景下多光谱-高光谱遥感勘查关键技术及应用,云南省科学技术进步奖二等奖(R1)

2. 2009年,滇西北典型成矿带1:10万遥感地质调查与遥感异常提取,云南省科学技术进步奖三等奖(R1)

5. 2005年,澜沧江流域南段矿产资源遥感预测与评价,云南省科学技术进步奖三等奖(R1)

6. 2004年,云南省矿产资源及其开发利用遥感综合调查,云南省科学技术进步奖二等奖(R6)

 
授权国家发明专利及软件著作权:

[1]2025.08.01,一种蚀变矿物信息的提取方法、装置、设备和介质,ZL2025 1 0451863.9,张庚,赵志芳,张新乐,林幸伟,周家喜

[2]2025.07.01,一种基于多源遥感技术的找矿方法、装置、设备及介质,ZL 2025 1 0273235.6,陈琪,赵志芳,蔡达裕,周家喜,章涛,张庚,徐婷,王以扬

[3]2025.05.23,一种山区大尺度滑坡InSAR形变速率监测方法及系统,ZL 2025 1 0331242.7,周定义,赵志芳

[4]2025.04.01,一种黏土型锂矿的勘探方法和装置,ZL 2025 10059175.8,赵志芳,冯轮新,杨昌毕,赵逍

[5]2024.11.01,一种DS-InSAR技术同质像元选取方法及系统, ZL 2023 1 0897024.0,周定义,赵志芳

[6]2024.10.11,一种相位估计优化方法、装置和设备,ZL 2024 1 1027800.2,周定义;赵志芳  

[7]2024.10.01,一种岩性识别方法、装置、设备及介质,ZL 2024 1 0987520.X,章涛;赵志芳;周家喜,张瑞丝  

[8]2024.09.03,一种蚀变矿物遥感定量识别方法、系统及电子设备, ZL 2023 1 1060147.5,陈琪;赵志芳;张新乐,张庚,代启学,牛磊

[9]2024.06.14,一种InSAR相位解缠方法、系统、设备及介质, ZL 2023 1 1318313.7,授权公告号:CN117368916B,周定义,赵志芳

[10]2024.06.14,一种高山峡谷地区滑坡敏感性评价方法、系统及设备,ZL 2023 1 0899736.6,赵志芳,周定义

[11]2024.05.10,一种基于自动生成样本的岩性识别方法、平台及介质,ZL2024 1 0147290.6,赵志芳,章涛,张庚,陈琪

[12]2022.06.17,赵志芳等,矿产资源打非治伪监督管理信息平台V2,软件著作权,登记号:2022SR0782041

[13]2021.05.28,赵志芳等,矿产卫片执法检查数据校验分析系统V1.0,软件著作权,登记号:2021SR0793819

[14]2021.05.21,赵志芳等,矿产卫片执法外业工作辅助APPV1.0,软件著作权,登记号:2021SR0774315

[15]2021.02.03,腾冲野外地质仿真模拟实习软件[简称:TFGSPS]V1.0,软件著作权,登记号:2021SR0191336

 
承担主要科研项目:

[1]2026.01-2029.12,蚀变矿物-成矿元素高光谱响应特征及反演模型研究:来自滇东南丘北地区浅成低温热液型金矿的印证,国家自然科学基金委员会,42562036,主持,在研

[2]2025.01-2027.01,临沧-红河离子吸附型稀土矿产成矿规律与勘查技术研究,云南省科技厅(重点研发计划)主持,在研

[3]2025.03-2026.03,云南省打击整治盗采矿产资源专项,云南省自然资源厅,主持,在研

[4]2025.03-05,老挝乌多姆赛省巴边县普松多金属矿区2024年Ι阶段地质勘查项目遥感技术服务项目,云南省地质矿产勘查院,主持,结题

[5]2024.08-2027.07,滇东北-滇中铝土矿遥感找矿勘查关键技术及应用,云南省自然资源厅,主持,在研

[6]2024.04-2025.03,滇东南锰矿找矿遥感技术研发及示范应用,云南省地质勘查基金管理中心,主持,结题

[7]2024.03-2024.12,打非治违监管平台运行维护及重点地区数据推送服务,云南省自然资源厅,主持,结题;

[8]2024.07-2024.10,菲律宾吕宋岛矿化异常遥感地质解译及蚀变矿物,云南华联矿物勘探有限责任公司,主持,结题

[9]2023.08-2024.02,《云南文山地区锂资源找矿预测研究》遥感地质研究及地球化学测试分析专题说明书编制,云南省地质矿产勘查开发局第二地质大队,主持,结题

[10]2024.08-2025.07,楚雄市自然资源综合执法监管外业工作辅助平台建设项目,楚雄彝族自治州自然资源和规划局,主持,结题

[11]2023.01-2025.12,云南省中老孟缅自然资源遥感监测国际联合实验室,云南省科技厅(重大项目),主持,在研

[12]2023.11.01-2024.06.28,云南省2023年矿产资源违法情况外业实地核查及分析评价,云南省地质科学研究所,主持,结题

[13]2023.09.8-2023.12.31,楚雄州2023年“打非治违”矿山开发遥感动态监测项目,楚雄彝族自治州自然资源和规划局,结题

[14]2023.06-2024.06,打非治违平台信息网络及软件购置,云南省自然资源厅,主持,结题

[15]2023.04-2023.12,2021年度云南省重点区域地质灾害精细化调查与风险评价项目[玉龙县、永胜县],云南省有色地质局三一0队,主持,结题

[16]2023.01-2024.12,云南省三江成矿作用及资源勘查利用重点实验室,云南省地质调查局,主持,结题

[17]2022.08-2022.09,地质灾害遥感调查数据服务项目,北京东方至远科技股份有限公司,主持,结题

[18]2022.06-2022.12,云南省矿产资源违法情况野外实地核查及分析评价,云南省地质科学研究所,主持,结题

[19] 2022.06-2024.06,小龙潭矿区地表形变卫星遥感监测技术服务,云南小龙潭矿务局有限责任公司,主持,结题

[20]2022.06-2022.11,公路带状区域遥感影像数据处理及变形区识别优化测试化验加工,云南省交通规划设计研究院有限公司,主持,结题

[21]2019.01-2022.12,风化壳淋积型镍矿矿化特征矿物波谱响应及精细化遥感找矿模型研究,国家自然科学基金委(面上项目),41872251,主持,结题

[22]2018.09-2021.08,腾冲—潞西地区新生代以来地质环境演化及高原特色农业耦合关系研究,云南省科技厅—云南大学(联合基金重点项目)2018FY001(-019),主持,结题;

[23]2015.01-2018.12山地高原斑岩型铜矿矿化蚀变分带遥感弱异常光谱响应及增强,国家自然科学基金委(地区基金),41462015,主持,结题

 

代表性学术论著:


[1]Fen LunXin, Zhao zhifang, Yang Haiying, Chen Qi, Yang Changbi, Zhao Xiao, Zhang Geng, Zhang Xinle, Dong Xin. Clay-hosted Lithium exploration in the Wenshan region of Southeastern Yunnan Province, China, using multi-source remote sensing and structural interpretation. Minerals,2025,15(8), 826; https://doi.org/10.3390/min15080826

[2]杨海英, 赵志芳, 王涛, 米云川, 周骞, 孙涛. 滇东北早寒武世羊场磷矿沉积环境及稀土富集特征浅析. 矿物岩石地球化学通报, 2025, 44: 10.3724/j.issn.1007-2802.20240178.    

[3]Ziyang Li, Junxu Chen, Zhifang Zhao, Xiaotong Su, Shuanglan Yang, Xinle Zhang, Gaoqiang Xiao, Tao Fu, Lei Niu. Geochemical inversion study of potassium and phosphorus in soil based on neural network and ZY1-02D hyperspectral data. Scientific Reports, 2025, 15(1): 26484. https://doi.org/10.1038/s41598-025-06915-9

[4]Qi Chen, Dayu Cai, Zhifang Zhao, Xiaoguang Yang, Yilong Wang, Xiao Jiang, Lei Xu, Haichuan Duan, Yang He, Xiaoxiao Zhang, Yiyang Wang, Ting Xu. Alteration Information Extraction and Mineral Prospectivity Mapping in the Laozhaiwan Area Using Multisource Remote Sensing Data. Remote Sensing, 2025, 17, 2178. https://doi.org/10.3390/rs17132178

[5]Jiangqin Chao, Zhifang Zhao*, Zhibin Lai, Jianyu Liu, Yunfei Hu, Daman Cui. Exploring geothermal potential with robust satellite techniques using MODIS LST data. Geothermics. 2025,132. https://doi.org/10.1016/j.geothermics.2025.103414

[6]Zhifang Zhao, Geng Zhang, Qi Chen, Dayu Cai, Fujun Meng, Xingyue Long, Tao Zhang, Yiyang Wang, Ting Xu, Haiying Yang, Lei Miao. Gold exploration using multi-source remote sensing data in the northern part of the Wa State, Myanmar. Ore Geology Reviews. 2025. https://doi.org/10.1016/j.oregeorev.2025.106703

[7]Zhifang Zhao, Zhengyu Li, Penghui Lv, Fei Zhao, Lei Niu. The Study on Landslide Hazards Based on Multi-Source Data and GMLCM Approach. Remote Sensing. 2025, 17(9), 1634. https://doi.org/10.3390/rs17091634

[8]Qi Miaomiao, Liu Shiyin*, Zhao Zhifang*, et al. A mathematical model to improve water storage of glacial lake prediction towards addressing glacial lake outburst floods. Hydrology and Earth System Sciences, 2025(29): 969-982.https://hess.copernicus.org/articles/29/969/2025/

[5]Chen Qi, Dayu Cai, Jisheng Xia, Min Zeng, Haiying Yang, Ruisi Zhang, Yang He, Xiaoxiao Zhang, Yi Chen, Xinhui Xu, Zhifang Zhao*.Remote sensing identification of hydrothermal alteration minerals in the Duobuza porphyry copper mining area in Tibet using WorldView-3 and GF-5 data: The impact of spatial and spectral resolution. Ore Geology Reviews, 2025, 180, 106573.https://doi.org/10.1016/j.oregeorev.2025.106573

[6]Dai, H., Xu, J., Hu, X.*, Shu, Z., Ma, W., Zhao, Z.*.Deep projective prediction of building facade footprints from ALS point cloud. International Journal of Applied Earth Observation and Geoinformation, 2025, 139, 104448. https://doi.org/10.1016/j.jag.2025.104448

[7]Su, X., Zhao, Z., Zeng, M., Zhao, F.,Li, Z., Zheng, Y. Multispectral Inversion of Starch Content in Rice Grains from Yingjiang County Based on Feature Band Selection Algorithms. Agronomy, 2025, 15, 86. https://doi.org/10.3390/agronomy15010086

[8]Yifan Cao, Zhifang Zhao*, Mingchun Wen, Xin Zhao, Dingyi Zhou, Jingyi Qin, Liu Ouyang, Jingyao Cao.Identification and susceptibility assessment of landslide disasters in the red bed formation along the Nanjian-Jingdong Expressway. Ecological Indicators,2025,170, https://doi.org/10.1016/j.ecolind.2024.113002.

[9]Zhengyu Li, Zhifang Zhao*, Tao Zhang. Livability evaluation of urban environment based on Google Earth Engine and multi-source data: A case study of Kunming, China. Ecological Indicators, 2024, 169: 112968. https://doi.org/10.1016/j.ecolind.2024.112968

[10]Zhang, T., Zhao, Z.*, Dong, P., Tang, B. H., Zhang, G., Feng, L., & Zhang, X.. Rapid lithological mapping using multi-source remote sensing data fusion and automatic sample generation strategy. International Journal of Digital Earth, 2024, 17(1). https://doi.org/10.1080/17538947.2024.2420824

[11]Zheng Yu, Zhifang Zhao*, Min Zeng, Dingyi Zhou, Xiaotong Su, and Dingshuai Liu. Monitoring and Analysis of Surface Deformation in the Buzhaoba Open-Pit Mine Based on SBAS-InSAR Technology. Remote Sensing, 2024, 16, 22: 4177. https://doi.org/10.3390/rs16224177

[12]Yao, Y., Zhao, Z.*, , Li, Z. , Lai, Z., Wang, G. , Jiang J.. Source mechanism of the 2023 Ms 5.5 earthquake in Subei, Gansu Province revealed by relocated aftershocks and InSAR: complement to the‘shallow slip deficit’of the eastern boundary of the Altyn Tagh fault. Frontiers in Earth Science, 2024, 12:1447789. https://doi.org/10.3389/feart.2024.1447789

[13]Zhou, D., Zhao, Z.*. Optimal algorithm for distributed scatterer InSAR phase estimation based on cross-correlation complex coherence matrix. International Journal of Applied Earth Observation and Geoinformation, 2024, 134, 104214. https://doi.org/10.1016/j.jag.2024.104214

[14]Tao Zhang, Bo-Hui Tang*, Zhifang Zhao*. Mapping of Land Cover Over Highly Heterogeneous Areas in Yunnan Province With Active and Passive Remotely Sensed Data. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-16. doi: 10.1109/TGRS.2024.3465590.

[15]Liu Ouyang, Zhifang Zhao* Dingyi ZhouJingyao CaoJingyi QinYifan CaoYang He. Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR. Remote Sensing, 2024, 16,  3715. https://doi.org/10.3390/rs16193715    

[16]Yang Qin , Zhifang Zhao*  , Dingyi Zhou , Kangtai Chang , Qiaomu Mou , Yonglin Yang   Yunfei Hu. Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor. Remote Sensing, 2024,16(19): 3582. https://DOI.org/10.3390/rs16193582    

[17]Dingyi Zhou, Zhifang Zhao*. Fast InSAR Phase Unwrapping Method for Complex Mountainous Areas With High Noise and Large Gradient Changes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024,17,957-968. https://doi.org/10.1109/JSTARS.2024.3417417

[18]Yunfei Hu, Zhifang Zhao* ,Xinle Zhang ,Lunxin Feng ,Yang Qin ,Liu Ouyang, Ziqi Huang .Geological Study Based on Multispectral and Hyperspectral Remote Sensing: A Case Study of the Mahuaping Beryllium–Tungsten Deposit Area in Shangri-La. Sustainability, 2024, https://www.mdpi.com/2071-1050/16/15/6387

[19]Kangtai Chang, Zhifang Zhao*, Dingyi Zhou, Zhuyu Tian, Chang Wang. Prediction of Surface Subsidence in Mining Areas Based on Ascending-Descending Orbits Small Baseline Subset InSAR and Neural Network Optimization Models. Sensors, 2024, https://www.mdpi.com/1424-8220/24/15/4770

[20]Yonglin Yang, Zhifang Zhao*, Dingyi Zhou, Zhibin Lai, Kangtai Chang, Tao Fu, Lei Niu. Identification and Analysis of the Geohazards Located in an Alpine Valley Based on Multi-Source Remote Sensing Data. Sensors, 2024, https://www.mdpi.com/1424-8220/24/13/4057

[21]Geng Zhang, Zhifang Zhao*, Xinle Zhang, Xiatao Wu, Yangfan Zheng, Lunxin Feng, Ziqi Huang. Comprehensive Multi-Source remote sensing data integration for enhanced mineralization alteration extraction and geological structure interpretation in the Lala region of Sichuan Province. Ore Geology Reviews, 2024, https://doi.org/10.1016/j.oregeorev.2024.106032    

[22]Dingyi Zhou, Zhifang Zhao*, Wenfei Xi, Xin Zhao, Jiangqin Chao. New method for landslide susceptibility evaluation in alpine valley regions that considers the suitability of InSAR monitoring and introduces deformation rate grading. Geo-Spatial Information Science, 2024, https://doi.org/10.1080/10095020.2023.2270218

[23]Jiangqin Chao, Zhifang Zhao*, Shiguang Xu*,Zhibin Lai, Jianyu Liu ,Fei Zhao,Haiying Yang,Qi Chen. Geothermal target detection integrating multi-source and multi-temporal thermal infrared data. Ore Geology Reviews, 2024, https://doi.org/10.1016/j.oregeorev.2024.105991

[24]Haiying Yang, Zhifang Zhao*, Haifeng Fan , Min Zeng, Jiafei Xiao , Xiqiang Liu, Shengwei Wu, Jiangqin Chao, Yong Xia. Fe-(oxyhydr)oxide participation in REE enrichment in early Cambrian phosphorites from South China: evidence from in-situ geochemical analysis. Journal of Asian Earth Sciences, 2023, https://doi.org/10.1016/j.jseaes.2023.105910

[25] Mingchun Wen, Mengshi Yang, Xin Zhao, Zhifang Zhao*. Post-construction deformation characteristics of high-fill foundations of Kunming Changshui International Airport using time-series  InSAR  technology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, DOI 10.1109/JSTARS.2023.3328321

[26]Xinle Zhang, Zhifang Zhao*,Qi Chen*,Wang Chai,Ziyang Li, Geng Zhang, Haiying Yang,Lei Niu. Mapping hydrothermal alteration of the Pulang porphyry copper deposit, SW China, using ASTER and ZY1-02D satellite data. Ore Geology Reviews, 2023, 10, 1016. https://doi.org/10.1016/j.oregeorev.2023.105605    

[27]Geng Zhang, Qi Chen, Zhifang Zhao *, Xinle Zhang, Jiangqin Chao, Dingyi Zhou , Wang Chai, Haiying Yang , Zhibin Lai, Yangyidan He, Nickel Grade Inversion of Lateritic Nickel Ore Using WorldView-3 Data Incorporating Geospatial Location Information: A Case Study of North Konawe, Indonesia. Remote Sensing, 2023, 15, 3660. https://doi.org/ 10.3390/rs15143660

[28]Fei Zhao, Zhiyan Peng, Jiangkang Qian, Chen Chu, Zhifang Zhao, Jiangqin Chaog, Shiguang Xu. Detection of geothermal potential based on land surface temperature derived from remotely sensed and in-situ data. Geo-Spatial Information Science, 2023, 15, 1271. https://doi.org/10.1080/10095020.2023.2178335    

[29] Zhibin Lai, Jiangqin Chao, Zhifang Zhao*, Mingchun Wen, Haiying Yang, Wang Chai, Yuan Yao, Xin Zhao, Qi Chen, Jianyu Liu. Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China: Clues from InSAR and RST. Remote Sensing, 2023, 15, 1271. https://doi.org/10.3390/rs15051271    

[30]Haiying Yang, Zhifang Zhao*, Xiaomin Cao*, Haifeng Fan, Jiafei Xiao, Yong Xia, Min Zeng. Geochemistry of apatite individuals in zhijin phosphorites, South China: Insight into the REY sources and diagenetic enrichment. Ore Geology Reviews, 2022, 105169: https://doi.org/10.1016/j.oregeorev.2022.105169

[31]Qi Chen, Jisheng Xia, Zhifang Zhao*, Jiaxi Zhou*, Ruifeng Zhu, Ruisi Zhang, Xin Zhao, Jiangqin Chao, Xinle Zhang, Gen Zhang. Interpretation of hydrothermal alteration and structural framework of the Huize Pb–Zn deposit, SW China, using Sentinel-2, ASTER, and Gaofen-5 satellite data: implications for Pb–Zn exploration. Ore Geology Reviews, 2022, 150, 105154. https://doi.org/10.1016/j.oregeorev.2022.105154.

[32]ZHAO Xin*, LI Guo, ZHAO Zhi-fang*, LI Chun-xiao, CHEN Qi, YE Xian. Identifying the spatiotemporal characteristics of individual red bed landslides: a case study in Western Yunnan. China. J. Mt. Sci, 2022, 19(6): 1748-1766. https://doi.org/10.1007/s11629-022-7339-0

<p class="MsoNormal"        [33]Qi Chen, Zhi-Fang Zhao*, Ji-Sheng Xia*, Xin Zhao, Hai-Ying Yang, Xin-Le Zhang.  Improving the accuracy of hydrothermal alteration mapping based on image fusion of ASTER and Sentinel-2A data: a case study of Pulang Cu deposit, Southwest China. Geocarto International, 2022, https://doi.org/10.1080/10106049.2022.2086625.                        

[34]柴旺,赵志芳*,刘宇成,赖志滨,晁江琴. 普洱市木乃河工业园区普洱茶康养小镇活动构造评价[J]. 中国矿业202231S1):173-178.    

[35]柴旺,赵志芳*,段鹏,余璨. 滇东北茂租铅锌矿矿床地质特征及成矿模式[J]. 现代矿业20226375):1-5.    

[36]赵志芳,张新乐,陈琪,张瑞丝,李文昌,曹晓民.普朗斑岩型铜矿区矿化蚀变特征矿物填图及找矿潜力分析:来自资源一号02D遥感卫星的证据[J],沉积与特提斯地质2022421):17-29.    

[37]Dingyi Zhou, XiaoqingZuo, Zhifang Zhao*.Constructing a Large-Scale Urban Land Subsidence Prediction Method Based on Neural Network Algorithm from the Perspective of Multiple Factors. Remote Sensing, 2022, 14, 1803, https://doi.org/10.3390/rs14081803.

[38] Qi Chen, Zhifang Zhao*, Jiaxi Zhou, Ruifeng Zhu, JishengXia,Tao Sun, XinZhao, Jiangqin Chao. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing,  2022, 14: https://doi.org/10.3390/rs14051253.    

[39]Haiying Yang, Jiafei Xiao*, Yong Xia, Zhifang Zhao*, ZhuojunXie, Shan He,Shengwei Wu. Diagenesis of Ediacaran−early Cambrian phosphorite: comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geology Reviews, 2022, https://doi.org/10.1016/j.oregeorev.2022.104813.

[40] Yuehan Qin, Xinle Zhang, Zhifang Zhao*, Ziyang Li, Changbi Yang, Qunying Huang. Coupling Relationship Analysis of Gold Content Using Gaofen-5 (GF-5) Satellite Hyperspectral Remote Sensing Data: A Potential Method in Chahuazhai Gold Mining Area, Qiubei County, SW China. Remote Sensing, 2022, 14(1):109, https://doi.org/10.3390/rs14010109.1-20    

 
参加或组织学术交流:

[1]2025.10.31,云南第五届青年地质科技论坛会议,昆明,报告:一带一路东南亚资源环境遥感应用新进展    

[2]2025.10.13-16,中国地质学会第三届数据驱动与地学发展专业委员会学术会议,珠海,    

报告:基于AlphaEarth的岩性自动分类及蚀变矿物异常提取研究进展    

报告:大理苍山变质作用及冰川演化探索虚拟仿真实验

[3]2025.09.19-23,中国地质学会2025学术年会,昆明,报告:云南及毗邻区关键矿产多光谱-高光谱-重磁遥感找矿研究进展    

[4]2025.08.23-26,中国矿业联合会“绿色矿山万里行(鹤岗站)暨加快推进中国优势矿产建成优势战新产业”会议,鹤岗,报告:云南及毗邻区关键矿产多光谱-高光谱-重磁遥感找矿研究进展    

[5]2025.07.28-30,中国测绘学会摄影测量与遥感2025学术年会,昆明,报告:东南亚自然资源监测国产遥感应用进展    

[6]2025.07.04-06, 第二十一届全国数学地质与地学信息会议,北京,报告:东南亚遥感大数据地质异常挖掘及找矿预测初探    

[7]2025.04.27-29,第九届中国人工智能与大数据地球科学学术研讨会,长沙,报告:联合地面—星载高光谱—重磁技术的哀牢山构造蚀变岩型金矿成矿预测研究    

[8]2024.11.19, 中国地质调查局昆明自然资源调查中心学术交流会,昆明,报告:基于地面-星载多光谱-高光谱-重磁遥感找矿方法研究:云南及邻区遥感找矿应用    

[9]Oct. 28-Nov. 03, 2024Cooperation between Yunnnan Universtiy, China and University of Magway, Kyaukse University, MyanmarKunmingPresentationResearch Progress on Remote Sensing Prospecting in Southeast Asia of the Belt and Road Initiative   

[10]2024.11.01-03,第十届全国应用地球化学学术会议,昆明,报告:从遥感的视角看应用地球化学:地球化学遥感多光谱-高光谱反演初探    

[11]2024.10.25-272024(第一届)全国有色金属地质大会,昆明,报告:基于地面-星载多光谱-高光谱-重磁遥感的滇东南锰矿找矿方法研究  

[12]2024.09.19-22,第十七届全国矿床会议,贵阳,报告:基于多光谱-高光谱的滇东南锰矿遥感找矿方法研究    

[13]2024.09.06-09,第二届数据驱动与地学发展全国学术研讨会会议,北京,“一带一路”东南亚境外勘查遥感应用研究进展    

[14]2024.08.20-24,第二十届全国数学地质与地学信息会议,长春    

[15]2024.07.16-7.19,第十三届ics2024光谱网络会议,多光谱-高光谱波谱响应及找矿预测:滇东南丘北地区低温热液型金矿矿化异常应用    

[16]2024.04.26-28,第八届人工智能与大数据地球科学学术研讨会暨第二届空间地球大数据高峰论坛,成都,报告:国产高光谱在金矿化异常识别中的应用:技术挑战与前景    

[17]2024.01.20,中国地质调查局昆明自然资源综合调查中心转制改革五周年科技成果报告会暨第二届云岭论坛,昆明,报告:多光谱-高光谱遥感蚀变岩石-矿物-元素反演研究及找矿勘查应用    

[18]2023.12.24,自然资源绿色发展与生态文明建设遥感技术应用专题研讨会(腾讯会议),学术报告:云南遥感找矿应用    

[19]2023.12.17,第十届全国成矿理论与找矿方法学术讨论会,西安,报告:滇东北磷矿遥感多元信息找矿勘查方法初探    

[20]2023.12.08-102023新时代高校地球科学教学改革与创新研讨会,合肥,报告:腾冲火山喷发探究式虚拟仿真实验建设    

[21]2023.11.15-17,高等学校地球科学虚拟仿真、人工智能和大数据与拔尖人才培养研讨会,北京,报告:腾冲火山喷发探究式虚拟仿真实验    

[22]2023.09.20,中国地质学会2023年学术年会,海南琼海(博鳌论坛),报告:基于多光谱-高光谱遥感的前期勘查指示意义分析:以香格里拉麻花坪铍钨矿区为例    

[23]2023.07.21,云南省有色地质局技术培训,昆明,培训内容:遥感新技术实践与应用    

[24]2023.04.20-21,云南新一轮找矿行动及深部找矿技术研讨会,昆明,报告:基于多光谱-高光谱遥感的前期勘查指示意义分析:以香格里拉麻花坪铍钨矿区为例    

[25]2023.04.14-17,中国地质学会数据驱动与地学发展专业委员会成立大会暨全国学术研讨会,珠海,报告:基于遥感大数据的滇东南低温热液金多金属矿智能找矿探讨    

[26]2023.04.07-09,第十九届全国数学地质与地学信息会议,昆明,承办    

报告:普朗斑岩型铜矿区矿化蚀变特征矿物填图及找矿潜力分析:来自资源一号 02D 遥感卫星的证据;    

报告:云南腾冲火山地质野外教学资源及虚拟仿真课程建设

[27]2023.03.31-04.03,第十六届全国矿床会议,太原,报告:基于国产高光谱等的滇东南浅成低温热液型金矿找矿勘查研究    

[28]2023.03.26-30,中国遥感应用协会“遥感技术创新应用”高端论坛暨专家委员会常务会议,昆明,报告:基于WorldView-3数据的红土型镍矿矿化蚀变及其富集信息反演研究-以印度尼西亚风化壳型镍矿为例    

[29]2023.02.10-11,新疆地质矿产勘查开发局第八地质大队,昆明,报告:遥感地质调查工作流程及方法、滇东南低温热液型金矿遥感勘查应用实例    

[30]2022.12.10,中国地质学会2022年全国遥感地质学术年会,腾讯会议,报告:基于多光谱-高光谱的蚀变岩石-矿物-元素反演研究    

[31]2022.01.29,热红外遥感及找矿技术研讨会,腾讯会议,报告:基于多/高光谱的蚀变矿物-地球化学元素矿化弱异常波谱机理及增强提取研究    

 
 
 
 
 

文章附件:

Copyright © 2009 云南大学地球科学学院,School of Earth Sciences,Yunnan University  地址:云南大学呈贡校区,
   地球科学学院, 电话:0871-65033733,邮编:650500,Kunming 650500, China,ICP备案号:滇ICP备12004993号