您现在的位置: 首页 >> chinese >> 院系 >> 大气科学系 >> 师资队伍 >> 教师名录 >> 副教授 >> 查进林
来源:查进林 | 作者:查进林 | 发布日期:2022-04-26 11:31:42 
1寸   查进林、博士、副教授、硕士生导师
工作单位:云南大学,地球科学学院
邮箱:zhajl@ynu.edu.cnzhajl@tea.ac.cn


简介


  主要从事陆域地表风速评估、预测及机理揭示,复杂地形条件下的风能资源评估和预测模型构建,土地利用/覆盖变化的区域气候效应等领域研究。云南省优青、云南省“兴滇英才支持计划”—青年人才。截止目前,主持国家自然科学基金面上项目、青年项目、云南省优青项目、云南省基础研究—重大项目课题、中国科学院特别研究资助等。参加过国家重点基础研究发展规划项目2项,国家自然科学基金项目2项。申请发明专利5项。发表风速领域SCI论文30余篇,第一/通讯作者SCI论文20余篇,其它合作论文10余篇。作为主要完成人发表的风速领域论文Google Scholar引用1200余次,5篇论文成为联合国政府间气候变化专门委员会第六次评估报告支撑材料。多篇论文的研究成果被Nature Reviews Earth & Environment, Nature Climate Change等国际期刊引用或评述。博士论文获评云南省优秀博士学位论文。

 

教育经历

2015.09~2019.07:云南大学、气象学、博士、导师:吴涧(教授)
2012.09~2015.07:云南大学、气象学、硕士、导师:吴涧(教授)
2008.09~2012.07:云南大学、大气科学、学士、导师:吴涧(教授)

 

工作经历

2022.03~至今:云南大学,地球科学学院,副教授
2019.07~2021.12:中国科学院大气物理研究所,博士后,合作导师:符淙斌(院士)/赵得明(研究员)

 

主持和参与项目

[1] 云南省基础研究计划—重大项目:“云南冬春连旱的时空格局演变特征和机理及其风险识别预测技术”(202401BC070001),第三课题:“云南区域冬春连旱极端事件的风险识别及预测预估”,2025.06~2028.5,97.0万,主持,在研 

[2] 国家自然科学基金—面上项目:土地利用/覆盖变化的内外摩擦效应对中国近地面风速变化的影响(42475040),2025.01~2028.12,48.0万,主持,在研 

[3] 云南省优青项目:中国陆域近地面风速年代际变化的物理机制研究(202401AW070008),2024.03~2027.02,30.0万,主持,在研 

[4] 中国电建集团贵阳勘测设计研究院有限公司科技项目:基于人工智能和大数据的风功率密度预测模型研究(QG/GYY-A3-MST-04-2021/5),2023.06~2025.12,35.0万元,主持,结题 

[5] 国家自然科学基金—青年项目:中国陆域近地面风速多时间尺度变化的检测归因研究(42005023),2021.01~2023.12,24.0万,主持,结题 

[6] 中国科学院特别研究资助项目:我国陆域近地面风速未来时空演变特征及归因分析,2019.07~2021.12,80.0万,主持,结题 

[7] 中国博士后科学基金-面上项目:大尺度环流场改变影响我国陆域近地面风速的机理分析(2019M660761),2020.01~2021.12,8.0万,主持,结题 

[8] 国家重点研发计划:“共享开放、自主可控的区域地球系统模式多元耦合及人类活动影响的反馈与预估”,第四课题:东亚气候-环境-生态系统的协同演变及未来人居环境预估(2023YFF0805504),2023.12~2028.11,558.0万元,参与,项目骨干,在研 

[9] 国家自然科学基金—国际(地区)合作与交流项目:城市绿地缓解城市热岛效应:北京和华沙的比较研究(42361134582),150.0万,2024.01~2026.12,参与,项目骨干,在研 

[10] 国家自然科学基金—联合基金:三峡水库的区域气候效应及其水文循环响应机制研究(U2240218),2022.01~2025.12,260.0万元,参与,项目骨干,在研 

[11] 国家重点研发计划:高分辨率区域地球系统模式的研发及应用 第四课题:区域地球系统模式与数据服务平台建设(2018YFA0606004),2018.05~2023.05,679.0万,参与,结题

 

发表论文

[1] Zha JL, Chuan T, Wu J*, Zhao DM, Fan WX, & Jiang HP (2025) Key   internal mode influencing the decadal transition of winter surface wind speed   in China and its quantitative contribution. Geophysical   Research Letters, 52, e2025GL116459, https://doi.org/10.1029/2025GL116459

[2] Chuan T, Zha JL*, Wu J, Zhao DM, Fan WX, &   Jiang HP (2025) Variations in strong and light winds significantly influence   the decadal transition of winter mean near-surface wind speed across China. Journal of Geophysical Research: Atmospheres, 130, e2024JD042840, https://doi.org/10.1029/2024JD042840

[3] Long ZY, Zha JL*, Zhang H, Chuan T, Lu WX, Yan   YJ, Xia L, Fan WX, Jiang HP, Zhao DM, & Wu J (2025) Deep learning with   ERA5 variables accurately simulates near-surface wind speed variations across   a complex terrain region. Geophysical Research   Letters, 52, e2025GL116108, https://doi.org/10.1029/2025GL116108

[4] Zha JL, Chuan T, Wu J*,   Zhao DM, Luo M, Feng JM, Fan WX, Shen C, & Jiang HP (2024) Attribution of   terrestrial near-surface wind speed changes across China at a centennial   scale. Geophysical   Research Letters, 51, e2024GL108241, https://doi.org/10.1029/2024GL108241

[5] Chuan T, Zha JL*, Wu J, Zhao DM, Fan WX, Jiang   HP, & Lyu YJ (2024) Non-Synchronization of the decadal transition in   winter near-surface wind speed across northern and southern China. Geophysical Research Letters,   51, e2024GL110246, https://doi.org/10.1029/2024GL110246

[6] Zha JL, Chuan T, Qiu Y, Wu J*,   Zhao DM, Fan WX, Lyu YJ, Jiang HP, Deng KQ, Andres-Martin M, &   Azorin-Molina C (2024) Projected near-surface wind speed and wind energy over   Central Asia using dynamical downscaling with bias-corrected global climate   models. Advances in Climate Change Research, 15, 669679, https://doi.org/10.1016/j.accre.2024.07.007

[7] Li LW, Zha JL*, Chuan T, Wu J, Zhao DM, Fan WX, Lyu YJ, & Jiang HP (2024)   Decadal variations in near-surface wind speed across the Northern Hemisphere   on a centennial timescale and their possible causes.Advances in Climate Change Research,15, 10031012, https://doi.org/10.1016/j.accre.2024.10.002

[8] Zha JL, Shen C, Wu J, Zhao DM*,   et al (2023) Evaluation and Projection of Changes in Daily Maximum Wind Speed   over China based on CMIP6. Journal of Climate,   36, 15031520, https://doi.org/10.1175/JCLI-D-22-0193.1

[9] Zha JL, Shen C, Wu J, Zhao DM, Fan   WX*, et al (2022) Effects of Northern Hemisphere Annular Mode on   Terrestrial Near-Surface wind speed Changes over Eastern China from 1979 to   2017. Advances   in Climate Change Research, 13, 875883, https://doi.org/10.1016/j.accre.2022.10.005

[10] Zha JL, Shen C, Zhao DM*,   et al (2022) Contributions of external forcing and internal climate   variability to changes in the summer surface air temperature over East Asia. Journal of Climate, 36, 50135032,   https://doi.org/10.1175/JCLI-D-21-0577.1

[11] Shen C, Zha JL*, Wu J, Zhao DM, et   al (2022) Does CRA-40 outperform other   reanalysis products in evaluating near-surface wind speed changes over land   in China? Atmospheric Research,   266, 105948, https://doi.org/10.1016/j.atmosres.2021.105948

[12] Zha JL, Shen C, Wu J, Zhao DM*, et   al (2021) Projected Changes in Global Terrestrial Near-Surface Wind Speed in   1.5-4.0 ℃ Global Warming Levels. Environmental Research Letters, 16, 114016, https://doi.org/10.1088/1748-9326/ac2fdd

[13]   Zha JL, Shen C, Zhao DM, Wu J*,   & Fan WX (2021) Slowdown and reversal of terrestrial near-surface wind   speed and its future changes over eastern China. Environmental Research Letters, 16, 034028, https://doi.org/10.1088/1748-9326/abe2cd

[14] Zha JL, Zhao DM*, Wu J,   & Shen C (2021) Terrestrial near-surface wind speed variations in China:   research progress and prospects. Journal of Meteorological Research, 35, 537556,   https://doi.org/10.1007/s13351-021-0143-x

[15] Shen C, Zha JL*, Zhao DM, & Wu J   (2021) Centennial-scale variability in terrestrial near-surface wind speed   over China. Journal   of Climate, 34, 58295846, https://doi.org/10.1175/JCLI-D-20-0436.s1

[16] Shen C, Zha JL*,   Zhao DM, Wu J, et al (2021) Estimating   centennial-scale changes in global terrestrial near-surface wind speed based   on CMIP6. Environmental Research   Letters, 16, 084039, https://doi.org/10.1088/1748-9326/ac1378

[17] Zha JL, Wu J*, Zhao DM,   & Fan WX (2020) Future projections of the near-surface wind speed over   eastern China based on CMIP5 datasets. Climate Dynamics, 54, 23612385,   https://doi.org/10.1007/s00382-020-05118-4

[18] Zha JL, Zhao DM*,   & Wu J (2019) Numerical simulation of the effects of land use and cover   change on the near-surface wind speed over Eastern China. Climate Dynamics, 53, 17831803,   https://doi.org/10.1007/s00382-019-04737-w

[19]   Zha JL, Wu J*, &   Zhao DM (2019) A possible recovery of the near-surface wind speed in Eastern   China during winter after 2000 and the potential causes. Theoretical and Applied   Climatology, 136, 119134, https://doi.org/10.1007/s00704-018-2471-z

[20] Zha JL, Wu J*, &   Zhao DM (2017) Changes of the probabilities in different ranges of   near-surface wind speed in China during the period for 1970-2011. Journal of Wind Engineering   & Industrial Aerodynamics, 169, 156167, https://doi.org/10.1016/j.jweia.2017.07.019

[21] Zha JL, Wu J*, &   Zhao DM (2017) Effects of land use and cover change on the near-surface wind   speed over China in the last 30 years. Progress in Physical Geography-Earth   and Environment, 41, 4667, https://doi.org/10.1177/0309133316663097

[22] Zha JL, Wu J*, &   Zhao DM (2016) Changes of probabilities in different wind grades induced by   land use and cover change in Eastern China Plain during 1980-2011. Atmospheric Science Letters, 17, 264269,   https://doi.org/10.1002/asl.653

[23] Wu J, Zha JL, & Zhao DM (2018) Changes in   terrestrial near-surface wind speed and their possible causes: an overview. Climate Dynamics, 51, 20392078,   https://doi.org/10.1007/s00382-017-3997-y

[24] Wu J, Zha JL, & Zhao DM (2018) Effects of   surface friction and turbulent mixing on long-term changes in the   near-surface wind speed over the Eastern China Plain from 1981 to 2010. Climate Dynamics, 51, 22852299,   https://doi.org/10.1007/s00382-017-4012-3

[25] Wu J, Zha JL, & Zhao DM (2018) Changes of   wind speed at different heights over Eastern   China during 1980-2011. International Journal of Climatology, 38,   44764495, https://doi.org/10.1002/joc.5681

[26] Wu J, Zha JL, & Zhao DM (2017) Evaluating   the effects of land use and cover change on the decrease of surface wind   speed over China in recent 30 years using a statistical downscaling method. Climate Dynamics, 48, 131149,   https://doi.org/10.1007/s00382-016-3065-z

[27] Wu J, Zha JL, & Zhao DM (2016) Estimating   the impact of the changes in land use and cover on the surface wind speed   over the East China Plain during the period 1980-2011. Climate Dynamics, 46, 847863,   https://doi.org/10.1007/s00382-015-2616-z

[28] Zhao QH, Qiu WT, Yang S, Chen DL, Azorin-Molina C, Li HR, Zhang   GF,Zha JL, & Deng KQ (2025) Changes   in the upper-air wind speed over China linked to the intensification of   Tropical Pacific Zonal SST gradient in boreal winter.Journal of Climate, 38, 44754489, https://doi.org/10.1175/JCLI-D-24-0772.1

[29] Liu WL, Yang S, Chen DL, Zha JL, et al (2024)   Rapid acceleration of Arctic near-surface wind speed in a warming climate.   Geophysical   Research Letters, 51, e2024GL109385, https://doi.org/10.1029/2024GL109385

[30] Chuan T, Wu J, Zha JL, Zhao DM, et al (2024)   Asynchronous changes in terrestrial near-surface wind speed among regions   across China from 1973 to 2017. Atmospheric Research, 300, 107220, https://doi.org/j.atmosres.2024.107220

[31] Deng KQ, Yang S, Liu WL, Li H, Chen DL, Lian T, Zhang GF, Zha   JL, & Shen C (2024) The offshore wind speed changes in China: an   insight into CMIP6 model simulation and future projections. Climate Dynamics, 62, 33053319, https://doi.org/10.1007/s00382-023-07066-1

[32] Andres-Martin M, Azorin-Molina C, Shen C, Fernandez-Alvarez J,   Gimeno L, Vicente-Serrano S, & Zha JL (2023) Uncertainty   in surface wind speed projections over the Iberian Peninsula: CMIP6 GCMs   versus a WRF-RCM. Annals of the New York Academy of Sciences,   1529, 101108, https://doi.org/10.1111/nyas.15063

[33]   Shen C, Zha JL, Chen DL, et al (2022)   Evaluation of global terrestrial near-surface wind speed simulated by CMIP6   models and their future projections. Annuals   of the New York Academy of Sciences, 1518,   249263, https://doi.org/10.1111/nyas.14910

[34]   Wang J, Feng JM, Yan ZW, & Zha JL (2020)   Urbanization impact on regional wind stilling: A modeling study in the   Beijing-Tianjin-Hebei region of China. Journal of Geophysical Research: Atmospheres, 125, e2020JD033132, https://doi.org/10.1029/2020JD033132

 

专利

[1] 孙欣雨,查进林,等(2025)基于自监督神经网络的近地表风速预测技术,发明专利,申请号:2025101381451
[2] 查进林,孙欣雨,等(2024)一种基于多维注意力机制的复杂地形条件下风场重构方法. 发明专利,专利号:ZL 2024 1 0924192.9 
[3] 查进林,陆雯茜,张浩,等(2024)一种基于高分辨率风速模型的风速预测方法. 发明专利,申请号:2024101381451
[4] 张鹏伟,张浩,查进林,等 (2023) 一种基于深度学习网络的智能识别算法. 发明专利,专利号:202311208058.0

 

指导本科生/研究生竞赛获奖及项目

[1] 2025年中国国际大学生创新大赛,省金奖。负责人:孙欣雨。指导老师:查进林。
[2] 第十一届全国大学生统计建模大赛,省二等奖。负责人:孙欣雨。指导老师:查进林。
[3] 全国大学生气象科技创新大赛,全国三等奖。负责人:胡阳。指导老师:查进林。
[4] 2025年云南大学研究生科研创新项目。主持人:白雪汝。指导老师:查进林。
[5] 2024年云南大学研究生科研创新项目。主持人:张含。指导老师:查进林。
[6] 2025年云南大学本科生创新创业训练项目。校级。负责人:凃远丹。指导老师:查进林。
[7] 2024年云南大学本科生创新创业训练项目。国家级。负责人:孙欣雨。指导老师:查进林。
[8] 2024年云南大学本科生创新创业训练项目。校级。负责人:胡阳。指导老师:查进林。
[9] 2023年云南大学本科生创新创业训练项目。校级。负责人:孙欣雨。指导老师:查进林。

 

教改项目和教改论文

[1] 教育部产学合作协同育人项目:面向拔尖气象人才培养的《大气物理学》核心教学内容分层优化设计(编号:2510104456),5万,2025.9~2026.9,主持。

[2] 云南大学本科教育教学改革研究项目:以赛促教、以教哺赛:《大气物理学》赛教融合的创新实践研究,一般项目,2万,,2026.1~2027.1,主持。 

[3] 樊雯璇,查进林,等(2023)《大气物理学课程思政教学改革初探》。2023年新时代高校地球科学教学改革与创新研讨会论文集。

 

获奖情况

[1] 云南省兴滇英才支持计划—青年人才
[2] 宝钢教育奖/宝钢教育基金会
[3] 云南省优秀博士学位论文:《中国东部地区陆域近地面风速时空演变特征及机理分析》
[4] 云南省优秀硕士学位论文:《中国地区土地利用/覆盖变化影响近地面风速的分析》

 

 
 
 
 

文章附件:

Copyright © 2009 云南大学地球科学学院,School of Earth Sciences,Yunnan University  地址:云南大学呈贡校区,
   地球科学学院, 电话:0871-65033733,邮编:650500,Kunming 650500, China,ICP备案号:滇ICP备12004993号